Spectral Characterization and Proteolytic Mapping of Native 120-Kilodalton Phytochrome from Cucurbita pepo L.
نویسندگان
چکیده
A spectral, immunochemical, and proteolytic characterization of native 120-kilodalton (kD) phytochrome from Cucurbita pepo L. is presented and compared with that previously reported for native 124-kD phytochrome from Avena sativa. The molecule was partially purified ( approximately 200-fold) in the phytochrome-far red-absorbing form (Pfr) in the presence of the protease inhibitor, phenylmethylsulfonyl fluoride, using a modification of the procedure initially developed to purify 124-kD Avena phytochrome. The spectral properties of the preparations obtained are indistinguishable from those described for 124-kD Avena phytochrome, including a Pfr lambda(max) at 730 nanometers, a spectral change ratio (DeltaA(r)/DeltaA(fr)) of 1.05, and negligible dark reversion of Pfr to the red-absorbing form (Pr) in the presence or absence of sodium dithionite. This lack of dark reversion in vitro contrasts with observations that Cucurbita phytochrome, like phytochrome from most other dicotyledons, exhibits substantial dark reversion in vivo. Ouchterlony double immunodiffusion analysis with polyclonal antibodies indicates that 120-kD Cucurbita phytochrome is immunologically dissimilar to 124-kD Avena phytochrome. However, despite this dissimilarity, immunoblot analyses of proteolytic digests have identified at least three spatially separate epitopes that are common to both phytochromes. Using endogeneous protease(s), a peptide map for Cucurbita phytochrome has been constructed and the role that specific domains play in the overall structure of the photoreceptor has been examined. One domain near the NH(2) terminus is critical to the spectral integrity of the molecule indicating that this domain plays a structural role analogous to that of a domain near the NH(2) terminus of Avena phytochrome. Proteolytic removal of this domain occurs preferentially in Pr and its removal shifts the Pfr lambda(max) to 722 nm, increases the spectral change ratio to 1.3, and substantially enhances the dark reversion rate. The apparent conservation of this domain among evolutionarily divergent plant species and its involvement in a conformational change upon photoconversion makes it potentially relevant to the mechanism(s) of phytochrome action. Preliminary evidence from gel filtration studies suggests that the 55-kD chromophoreless COOH-terminal region of the polypeptide contains a domain responsible for dimerization of phytochrome monomers.
منابع مشابه
Tetranitromethane oxidation of phytochrome chromophore as a function of spectral form and molecular weight.
Tetranitromethane bleaches Avena phytochrome. The phytochrome (far-red absorbing form; Pfr) chromophore of 124 kilodalton (kD) phytochrome is oxidized 8 times more rapidly than the red absorbing form (Pr). Proteolysis of the 124 kD molecule to the extensively studied mixture of 118 and 114 kD polypeptides increases the rate of oxidation of Pfr 5-fold without affecting the rate of Pr oxidation. ...
متن کاملRed Light-enhanced Phytochrome Pelletability: Re-examination and Further Characterization.
Red light-enhanced pelletability of phytochrome was observed in extracts of all 11 plants tested: Avena sativa L., Secale cereale L., Zea mays L., Cucurbita pepo L., Sinapis alba L., Pisum sativum L., Helianthus anuus L., Raphanus sativus L., Glycine max (L.) Merr., Phaseolus vulgaris L., and Lupinus albus L. This enhanced pelletability was observed in all 11 plants following in situ irradiatio...
متن کاملComparative Phytochrome Immunochemistry as Assayed by Antisera against Both Monocotyledonous and Dicotyledonous Phytochrome.
Preparation and characterization of antisera against lettuce (Lactuca sativa L., cv. Grand Rapids) and pea (Pisum sativum L., cv. Alaska) phytochrome is described. These antisera, together with previously obtained antisera against zucchini (Cucurbita pepo L., cv. Black Beauty) and oat (Avena sativa L., cv. Garry) phytochrome, were used to compare by Ouchterlony double immunodiffusion phytochrom...
متن کاملCultivar-Based Introgression Mapping Reveals Wild Species-Derived Pm-0, the Major Powdery Mildew Resistance Locus in Squash
Powdery mildew is a major fungal disease on squash and pumpkin (Cucurbita spp.) in the US and throughout the world. Genetic resistance to the disease is not known to occur naturally within Cucurbita pepo and only infrequently in Cucurbita moschata, but has been achieved in both species through the introgression of a major resistance gene from the wild species Cucurbita okeechobeensis subsp. mar...
متن کاملAn Antibody to the Castor Bean Glyoxysomal Lipase (62 kD) also Binds to a 62 kD Protein in Extracts from Many Young Oilseed Plants.
An antibody raised against purified glyoxysomal lipase (triacylglycerol hydrolase EC 3.1.1.3.) from castor bean (relative molecular weight of 62,000) also binds to a protein with a relative molecular weight of 62,000 in extracts of food reserve tissues from many young oilseed plants. These plants include Brassica napus L., Zea mays L., Arachis hypogaea L., Glycine max L., Gossipium hirsutum L.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 77 4 شماره
صفحات -
تاریخ انتشار 1985